(goodwill - 2016.Fall Q18) a-Question

Reading: Odomirok - Chapter 22/23

Model: 2016.Fall #18

Problem Type: GAAP goodwill using cost-of-capital approach

Given

Amounts at time of acquisition at CY	
FV(assets)	280
U.S. GAAP assets	275
FV(liabilities) other than loss & LAE	70
purchase price	11

nominal f		
CY	paid during year	100
CY + 1	paid during year	60
CY + 2	paid during year	40
> CY + 2	paid during year	0

some more junk you'll need	
pre-tax cost-of-capital	9%
risk-free rate	2%
illiquidity premium	1%

still more junk you'll need:

loss & LAE payments are made mid-year return on capital is paid to investores at year-end

<== use 0.5, 1.5, 2.5,... to discount <== use 1, 2, 3,... to discount

required capital @ year-end = unpaid x

(stated slightly differently from exam problem - this is done so that my solution fits the risk-adjustment formula from Odomirok)

50%

Find

value of purchaser's GAAP goodwill using the cost-of-capital approach

Component #1: calculate nominal future cash flows of liabilities

For this problem, we are given the cash flows, otherwise we'd have to calculate them from the LDFs or the payment pattern.

Component #2: discount the nominal cash flows & add a load for illiquidity

discount rate = risk-free rate + illiquidity premium =
$$2\%$$
 + 1% = 3%

Actually, all we did here was calculate the discount rate, i. The actual discounting is done further down after the risk margin calculation.

Component #3: risk margin calculation

First, we need the cumulative unpaid values at the start of each year. See table at right =>

CY	200
CY + 1	100
CY + 2	40
> CY + 2	0

Then the capital required to support these liabilities = 50% x unpaid:

C_0	=	50%	Х	200	=	100
C_1	=	50%	х	100	=	50
C_2	=	50%	X	40	=	20
C ₃	=	50%	х	0	=	0

Now we can apply the **risk adjustment** formula using the discount rate from above:

Note that we use <u>integer</u> exponents because <u>investors are paid at year-end</u>.

solution continued on next page...

Now we have to calculate the discounted **unpaid values** using the same discount rate Use the given **incremental** unpaid values.

Note that we use $\underline{fractional}$ exponents 0.5, 1.5, 2.5,... because $\underline{payments}$ are \underline{made} \underline{mid} - \underline{year} .

100	/	(1.03) ^ 0.5	=	98.5
60	/	(1.03) ^ 1.5	=	57.4
40	/	(1.03) ^ 2.5	=	37.2
				193.1

Now we have all the pieces of FV(liabilities)

risk margin unpaid loss & LAE:			6.9 193.1 70.0					
other than loss & LAE: FV(liabilities) =			270.0	<== given in the statement of the problem				
We also know: FV(assets) = P = Then:			280.0 11.0	3				
goodwill	=	Р	-	[FV(assets)	-	FV(liabs)]
	=	11.0	-	[280.0	-	270.0]
	=	1.0	<== final a	<== final answer				