(goodwill - practice 01) a-Question

Reading: Odomirok - Chapter 22/23

Model: 2016.Fall #18

Problem Type: GAAP goodwill using cost-of-capital approach

Given

Amounts at time of acquisition at CY	
FV(assets)	690
U.S. GAAP assets	640
FV(liabilities) other than loss & LAE	180
purchase price	108

nominal f		
CY	paid during year	230
CY + 1	paid during year	140
CY + 2	paid during year	30
> CY + 2	paid during year	0

some more junk you'll need	
pre-tax cost-of-capital	9%
risk-free rate	3%
illiquidity premium	1%

still more junk you'll need:

loss & LAE payments are made mid-year return on capital is paid to investores at year-end

<== use 0.5, 1.5, 2.5,... to discount <== use 1, 2, 3,... to discount

required capital @ year-end = unpaid x

50%

(stated slightly differently from exam problem - this is done so that my solution fits the risk-adjustment formula from Odomirok)

Find

value of purchaser's GAAP goodwill using the cost-of-capital approach

Component #1: calculate nominal future cash flows of liabilities

For this problem, we are given the cash flows, otherwise we'd have to calculate them from the LDFs or the payment pattern.

Component #2: discount the nominal cash flows & add a load for illiquidity

discount rate = risk-free rate + illiquidity premium =
$$3\%$$
 + 1% = 4%

Actually, all we did here was calculate the discount rate, i. The actual discounting is done further down after the risk margin calculation.

Component #3: risk margin calculation

First, we need the cumulative unpaid values at the start of each year. See table at right =>

CY	400
CY + 1	170
CY + 2	30
> CY + 2	0

Then the capital required to support these liabilities = 50% x unpaid:

C_0	=	50%	x	400	=	200
C_1	=	50%	x	170	=	85
C_2	=	50%	X	30	=	15
C_3	=	50%	Х	0	=	0

Now we can apply the **risk adjustment** formula using the discount rate from above:

Note that we use $\underline{integer}$ exponents because $\underline{investors}$ are \underline{paid} at $\underline{year-end}$.

solution continued on next page...

Now we have to calculate the discounted **unpaid values** using the same discount rate Use the given **incremental** unpaid values.

Note that we use $\underline{fractional}$ exponents 0.5, 1.5, 2.5,... because $\underline{payments}$ are made $\underline{mid-year}$.

230	/	(1.04) ^ 0.5	=	225.5
140	/	(1.04) ^ 1.5	=	132.0
30	/	(1.04)^2.5	=	27.2
				384.7

Now we have all the pieces of FV(liabilities)

risk margin unpaid loss & LAE: other than loss & LAE: FV(liabilities) =			9.5 384.7 180.0 574.2	<== give	n in the statem	ent of th	ne problem	
We also know: Then:	v: FV(assets) = 690.0 P = 108.0			3 .				
goodwill	= = =	P 108.0 -7.8	- <== final a	[[Inswer	FV(assets) 690.0	-	FV(liabs) 574.2]

(goodwill - practice 02) a-Question

Reading: Odomirok - Chapter 22/23

Model: 2016.Fall #18

Problem Type: GAAP goodwill using cost-of-capital approach

Given

Amounts at time of acquisition at CY	
FV(assets)	500
U.S. GAAP assets	520
FV(liabilities) other than loss & LAE	130
purchase price	70

nominal f		
CY	paid during year	180
CY + 1	paid during year	100
CY + 2	paid during year	30
> CY + 2	paid during year	0

some more junk you'll need	
pre-tax cost-of-capital	8%
risk-free rate	2%
illiquidity premium	1%

still more junk you'll need:

loss & LAE payments are made mid-year return on capital is paid to investores at year-end

<== use 0.5, 1.5, 2.5,... to discount <== use 1, 2, 3,... to discount

required capital @ year-end = unpaid x

50%

(stated slightly differently from exam problem - this is done so that my solution fits the risk-adjustment formula from Odomirok)

Find

value of purchaser's GAAP goodwill using the cost-of-capital approach

Component #1: calculate nominal future cash flows of liabilities

For this problem, we are given the cash flows, otherwise we'd have to calculate them from the LDFs or the payment pattern.

Component #2: discount the nominal cash flows & add a load for illiquidity

discount rate = risk-free rate + illiquidity premium =
$$2\%$$
 + 1% = 3%

Actually, all we did here was calculate the discount rate, i. The actual discounting is done further down after the risk margin calculation.

Component #3: risk margin calculation

First, we need the cumulative unpaid values at the start of each year. See table at right =>

CY	310
CY + 1	130
CY + 2	30
> CY + 2	0

Then the capital required to support these liabilities = 50% x unpaid:

C_0	=	50%	х	310	=	155
C_1	=	50%	X	130	=	65
C_2	=	50%	X	30	=	15
C ₃	=	50%	X	0	=	0

Now we can apply the **risk adjustment** formula using the discount rate from above:

Note that we use $\underline{integer}$ exponents because $\underline{investors}$ are paid at year-end.

solution continued on next page...

Now we have to calculate the discounted **unpaid values** using the same discount rate Use the given **incremental** unpaid values.

Note that we use $\underline{fractional}$ exponents 0.5, 1.5, 2.5,... because $\underline{payments}$ are \underline{made} \underline{mid} - \underline{year} .

180	/	(1.03) ^ 0.5	=	177.4
100	/	(1.03) ^ 1.5	=	95.7
30	/	(1.03) ^ 2.5	=	27.9
				300.9

Now we have all the pieces of FV(liabilities)

risk margin		7.6						
unpaid loss & LAE:		300.9	<== given in the statement of the problem					
other than loss & LAE:		130.0						
FV(liabilities) =		438.5						
We also know:	FV	(assets) =	500.0	<== give	n in the statem	ent of ti	ne problem	
		P =	70.0	<== give	n in the statem	ent of th	ne problem	
Then:			(purchase price)					
goodwill	=	Р	-	[FV(assets)	-	FV(liabs)]
	=	70.0	-	[500.0	-	438.5]
	=	8.5	<== final a	inswer				