(goodwill - practice 01) a-Question

Reading: Odomirok - Chapter 22/23

Model: 2016.Fall #18

Problem Type: GAAP goodwill using cost-of-capital approach

Given

Amounts at time of acquisition at CY	
FV(assets)	690
U.S. GAAP assets	640
FV(liabilities) other than loss & LAE	180
purchase price	108

nominal f		
CY	paid during year	230
CY + 1	paid during year	140
CY + 2	paid during year	30
> CY + 2	paid during year	0

some more junk you'll need	
pre-tax cost-of-capital	9%
risk-free rate	3%
illiquidity premium	1%

still more junk you'll need:

loss & LAE payments are made mid-year return on capital is paid to investores at year-end

<== use 0.5, 1.5, 2.5,... to discount <== use 1, 2, 3,... to discount

required capital @ year-end = unpaid x

50%

(stated slightly differently from exam problem - this is done so that my solution fits the risk-adjustment formula from Odomirok)

Find

value of purchaser's GAAP goodwill using the cost-of-capital approach

Component #1: calculate nominal future cash flows of liabilities

For this problem, we are given the cash flows, otherwise we'd have to calculate them from the LDFs or the payment pattern.

Component #2: discount the nominal cash flows & add a load for illiquidity

discount rate = risk-free rate + illiquidity premium =
$$3\%$$
 + 1% = 4%

Actually, all we did here was calculate the discount rate, i. The actual discounting is done in "component #3" using the risk adjustment formula.

Component #3: First, we need the cumulative unpaid values at the start of each year:

CY	400
CY + 1	170
CY + 2	30
> CY + 2	0

Then the capital required to support these liabilities = 50% x unpaid:

C_0	=	50%	x	400	=	200
C_1	=	50%	x	170	=	85
C_2	=	50%	X	30	=	15
C_3	=	50%	Х	0	=	0

Now we can apply the **risk adjustment** formula using the discount rate from above:

Note that we use <u>integer</u> exponents because <u>investors are paid at year-end</u>.

solution continued on next page...

Note that we use $\underline{fractional}$ exponents 0.5, 1.5, 2.5,... because $\underline{payments}$ are made $\underline{mid-year}$.

230	/	(1.04) ^ 0.5	=	225.5
140	/	(1.04) ^ 1.5	=	132.0
30	/	(1.04) ^ 2.5	=	27.2
				384.7

Now we have all the pieces of FV(liabilities)

 unpaid loss & LAE:
 9.5

 paid loss & LAE:
 384.7

 other than loss & LAE:
 180.0

 FV(liabilities) =
 574.2

180.0 <== given in the statement of the problem

We also know: FV(assets) = 690.0 <== given in the statement of the problem

P = 108.0 <== given in the statement of the problem

(purchase price)

goodwill = P - [FV(assets) - FV(liabs)] = 108.0 - [690.0 - 574.2] = -7.8 <== final answer

(goodwill - practice 02) a-Question

Reading: Odomirok - Chapter 22/23

Model: 2016.Fall #18

Problem Type: GAAP goodwill using cost-of-capital approach

Given

Amounts at time of acquisition at CY	
FV(assets)	610
U.S. GAAP assets	610
FV(liabilities) other than loss & LAE	150
purchase price	69

nominal 1		
CY	paid during year	220
CY + 1	paid during year	140
CY + 2	paid during year	30
> CY + 2	paid during year	0

some more junk you'll need	
pre-tax cost-of-capital	8%
risk-free rate	2%
illiquidity premium	2%

still more junk you'll need:

loss & LAE payments are made mid-year return on capital is paid to investores at year-end

<== use 0.5, 1.5, 2.5,... to discount <== use 1, 2, 3,... to discount

required capital @ year-end = unpaid x

(stated slightly differently from exam problem - this is done so that my solution fits the risk-adjustment formula from Odomirok)

50%

Find value of purchaser's GAAP goodwill using the cost-of-capital approach

Component #1: calculate nominal future cash flows of liabilities

For this problem, we are given the cash flows, otherwise we'd have to calculate them from the LDFs or the payment pattern.

Component #2: discount the nominal cash flows & add a load for illiquidity

discount rate = risk-free rate + illiquidity premium =
$$2\%$$
 + 2% = 4%

Actually, all we did here was calculate the discount rate, i. The actual discounting is done in "component #3" using the risk adjustment formula.

Component #3: First, we need the cumulative unpaid values at the start of each year:

CY	390
CY + 1	170
CY + 2	30
> CY + 2	0

Then the capital required to support these liabilities = 50% x unpaid:

C_0	=	50%	X	390	=	195
C_1	=	50%	X	170	=	85
C_2	=	50%	x	30	=	15
C ₃	=	50%	х	0	=	0

Now we can apply the **risk adjustment** formula using the discount rate from above:

Note that we use <u>integer</u> exponents because <u>investors are paid at year-end</u>.

 $solution\ continued\ on\ next\ page...$

Now we have to calculate the discounted **paid values** using the same discount rate

Note that we use <u>fractional</u> exponents 0.5, 1.5, 2.5,... because <u>payments are made mid-year</u>.

220	/	(1.04) ^ 0.5	=	215.7
140	/	(1.04) ^ 1.5	=	132.0
30	/	(1.04)^2.5	=	27.2
				374.9

Now we have all the pieces of FV(liabilities)

unpaid loss & LAE:			7.5					
paid loss & LAE:			374.9					
other than loss & LAE:			150.0	<== given in the statement of the problem				
FV(liabilities) =			532.4					
We also know:	v: FV(assets) = 610.0 <== given in the statement of the prob						he problem	
	P =	69.0	69.0 <== given in the statement of the problem					
Then:			(purchase price)					
goodwill	=	Р	-	[FV(assets)	-	FV(liabs)]
	=	69.0	-	[610.0	-	532.4]

<== final answer

-8.6