Model: 2015.Fall \#17

Calculate RBC charge R_{1}.

Given

\#	Unaffiliated Bonds NAIC Class 02	Unaffiliated Common Stock	Assets subject to Asset Concentration 1$\quad 5,000$

* Issuers are sorted from largest to smallest.

Bond Size Adjustment Factor WEIGHTS

bond count	$\#$ issuers	weights
$1-50$	8	* BSF = sumproduct(issuers, weights) / sum(issuers) -1
(shout-out to AT!)		
$101-100$	0	1.3
1000	0	1.0
>400	0	0.9

RBC Factors by Asset Category

Asset Category	RBC Factor
Unaffiliated Bonds Class 02	0.01
Unaffiliated Common Stock	0.15

Find
Calculate the RBC charge R_{1}.

R1	$=$	basic	+	BSC	+	ACC
	$=$	202	+	302	+	190
	$=$	694	$<==$	final answer		

$==>$ Since we have at most 12 issuers in this problem, BSF always equals 1.5
$==>$ In general BSF = sumproduct(\# issuers, weights) / sum(\# issuers) - 1
$==>$ if (bond count) > 1300 then the portfolio will receive a discount to their RBC charge for bonds (shout-out to AT!)
==> BSF decreases as bond count increases

